Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance.

نویسندگان

  • Akira Kawakami
  • Yutaka Sato
  • Midori Yoshida
چکیده

Fructans are water-soluble fructose oligomers and polymers that are based on sucrose, and have been implicated in protecting plants against water stress. Rice (Oryza sativa L.) is highly sensitive to chilling temperatures, and is not able to synthesize fructans. Two wheat fructan-synthesizing enzymes, sucrose:sucrose 1-fructosyltransferase, encoded by wft2, or sucrose:fructan 6-fructosyltransferase, encoded by wft1, were introduced into rice plants, and rice transformants that accumulate fructans were successfully obtained. The mature leaf blades of transgenic rice lines with wft2 or wft1 accumulated 16.2 mg g(-1) FW of oligo- and polysaccharides mainly composed of inulin oligomers of more than DP7, and 3.7 mg g(-1) FW of oligo- and polysaccharides, mainly composed of phlein oligomers of more than DP15, respectively. The transgenic rice seedlings with wft2 accumulated significantly higher concentrations of oligo- and polysaccharides than non-transgenic rice seedlings, and exhibited enhanced chilling tolerance. The oligo- and polysaccharide concentrations of seedlings expressing wft1 were obviously lower than those of lines expressing wft2, and no correlation between oligo- and polysaccharide concentrations and chilling tolerance was detected in wft1-expressing rice lines. The results suggest that transgenic rice lines expressing wheat-derived fructosyltransferase genes accumulated large amounts of fructans in mature leaf blades and exhibited enhanced chilling tolerance at the seedling stage. This is the first report owing that fructan accumulation enhanced tolerance to non-freezing low temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.

In order to understand cold adaptability and explore additional genetic resources for the cold tolerance improvement of rice, we investigated the genetic variation of 529 rice accessions under natural chilling and cold shock stress conditions at the seedling stage using genome-wide association studies; a total of 132 loci were identified. Among them, 12 loci were common for both chilling and co...

متن کامل

OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice

Plants modify their development to adapt to their environment, protecting themselves from detrimental conditions such as chilling stress by triggering a variety of signaling pathways; however, little is known about how plants coordinate developmental patterns and stress responses at the molecular level. Here, we demonstrate that interacting transcription factors OsMADS57 and OsTB1 directly targ...

متن کامل

Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars

Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox pr...

متن کامل

بررسی تحمل سرما در تعدادی از ارقام برنج با استفاده از صفات مورفولوژیک و فیزیولوژیک در مرحله گیاهچه‌ای

Cold stress is one of the most important environmental stresses for rice especially in temperate and high elevation areas. In present study, the effect of different temperatures, as the main plot, including 25 (control), 10 and 5°C on 12 rice cultivars (including Champa Yasouj, Gerde, Lenjan Askari, Kaamfirouz, Kohsar, Shafagh, Domsiya Mamassani, Dular, Gharib, Hasan saraei, Mosa Tarom and 304)...

متن کامل

Comparative Transcriptome Profiling of Chilling Stress Responsiveness in Two Contrasting Rice Genotypes

Rice is sensitive to chilling stress, especially at the seedling stage. To elucidate the molecular genetic mechanisms of chilling tolerance in rice, comprehensive gene expressions of two rice genotypes (chilling-tolerant LTH and chilling-sensitive IR29) with contrasting responses to chilling stress were comparatively analyzed. Results revealed a differential constitutive gene expression prior t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2008